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ABSTRACT In recent years, deep learning has been widely applied for mammographic image classification.
However, most of the existing methods are based on a single mammography view and cannot sufficiently
extract discriminative features, thereby resulting in an unsatisfactory classification accuracy. To solve this
problem and improve the mammographic image classification performance, we propose a novel multi-view
convolutional neural network (CNN) based on multiple mammography views in this paper. Considering
that the images acquired from different perspectives contain different and complementary breast mass
information, we modify the CNN architecture to exploit the complementary information from the various
views of mammography. The new architecture can extract discriminative features from the mediolateral
oblique (MLO) and craniocaudal (CC) views of the mammographic images and can effectively incorporate
these features for mammographic images. The dilated convolutional layers enable the feature maps extracted
from the multiple breast mass views to capture information from a large ‘‘field of vision’’. Moreover, multi-
scale features are obtained by using the convolutional and dilated convolutions. In addition, we incorporate
a penalty term into the cross entropy loss function, which enables the model evolution to reduce the
misclassification rate by enhancing the contributions of the samples misclassified in the training process.
The proposed method was evaluated and compared with several state-of-the-art methods on the open Digital
Database for Screening Mammography (DDSM) and Mammographic Image Analysis Society (MIAS)
datasets. The experimental results show that the proposed method exhibits a better performance than those
of the state-of-the-art methods.

INDEX TERMS Medical image processing, mammographic image, deep learning, convolutional neural
network.

I. INTRODUCTION
Breast cancer is one of the worst cancers due to its highest
rates of morbidity and fatality for women. Fortunately, more
than 90% of patients can be cured in the early stage of breast
cancer. Accordingly, the early detection and treatment of
breast cancer are essential for saving the lives of women.
In the field of breast cancer diagnosis, medical screenings,
such as magnetic resonance imaging (MRI), ultrasonic imag-
ing and molybdenum target X imaging, are the most popular
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medical imaging methods for breast cancer detection [1].
Among these medical screenings, molybdenum mammogra-
phy has the advantages of low cost, convenience of operation,
and low harm to patients.

Automatic computer-aided diagnosis of breast cancer with
mammography can not only help radiologists accelerate the
diagnostic process of breast examination but can also increase
the accuracy of breast cancer detection and save precious
medical resources. Considering the performance of poten-
tial features that have been extracted from mammographic
images [2], the use of machine learning methods has been
a controversial issue for benign or malignant breast mass
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classification in the study of medical image processing. The
machine learning methods can be divided into traditional
and deep learning methods. The traditional machine learn-
ing methods mainly include sparse representation [3], sup-
port vector machine (SVM) and K-nearest neighbor (KNN)
algorithms. For example, Alarabeyyat et al. [4] generated
four coefficient matrices from each mammographic image
by using wavelet decomposition. Reyad et al. [5] divided
a full-breast image into N × N grids, extracted the texture
feature of the breast image from each grid using local binary
pattern (LBP) [6], and generated the statistical feature from
the mammographic image based on discrete wavelet trans-
form (DWT). Classification via the SVM algorithm on the
features that are generated by fusing the texture feature and
the statistical feature yields excellent classification perfor-
mance. The traditional machine learning algorithms [7]–[9]
are more efficient than nonmachine-learning image feature
extraction algorithms, such as the histogram of oriented gra-
dient (HOG) [10] and LBP. However, the feature extraction
method must be designed by hand for the traditional machine
learning algorithms; therefore, it is difficult to generate a
highly effective feature extraction algorithm due to the diver-
sity of the samples [11]. In recent years, the deep learn-
ing technique has attracted wide attention [12]–[14]. Due to
its powerful automatic image feature extraction capability,
the CNN has been widely used in the field of mammography
processing. For instance, Jaffar [15] used the CNN to extract
features from a full mammographic image and classified the
extracted features by SVM. Gardezi et al. [16] extracted
features from mammographic image by using VGG-16; and
then classified the features as benign and malignant breast
mass via traditional machine learning algorithms, such as
the SVM, logistic classifier and KNN classifier; and they
achieved promising mammographic image classification per-
formance. Antropova et al. [17] used the method reported
in [18] to extract features from mammographic images,
then they also extracted features from mammographic
images by using VGG19 [19] for mammographic image
classification.

Although the abovementioned approaches have obtained
outstanding performance in the mammographic image clas-
sification task, the following problems still exist: (1) the
existing methods have not extracted adequately and essen-
tial features from the insufficient mammographic image
dataset. (2) There is no network that is specially designed
for mammographic image feature extraction according to the
characteristics of the images. To overcome these problems,
Lévy and Jain [20] used data augmentation and transfer learn-
ing methods to weaken the dependence of the deep learning
model training. This approach can extract more discrimina-
tive features from the augmentative mammographic image
dataset. Chougrad et al. [21] augmented a mammographic
image dataset by randomly transforming and rotating the
samples. The CNN exhibits strong performance in the auto-
matic feature extraction from images [22]–[24]. However,
training the model on a large-scale image dataset is necessary

for making full use of the advantages of the CNN. Although
the dependence of the CNN on the large-scale dataset can
be weakened and the performance can be improved by intro-
ducing data augmentation and transfer learningmethods [25],
these approaches cannot sufficiently exploit the intrinsic fea-
tures of the mammographic image dataset. The low-level
layer in the CNN can extract the superficial characteristics
of an object from the images, such as the edge or corner
information, and the high-level layer can extract abstract
features, such as the type of objects [26]. Jiao et al. [27]
extracted features from different layers of a CNN to identify
the diverse characteristics of a mammographic image. These
researchers extracted features from the Conv-5 layer and
Fc-7 layer and subsequently classified the extracted features
by using the SVM. Because these methods cannot extract the
specific features of mammographic images, the improvement
of the accuracy is limited by the insufficient samples for the
above methods.

To solve the abovementioned problems, we propose a novel
and effective algorithm based on CNN and multiple mam-
mography views for breast mass classification. Compared
with the existing classification algorithms for mammographic
images, the proposedmethod has the following contributions:

1) We propose a new method for simultaneously extract-
ing features from multiple views of the same breast mass.
Compared with the breast mass classification method based
on a single view, the features extracted from multiple views
of breast mass have a stronger discriminative ability. In addi-
tion, the multiple views also contain more complementary
information of the same mass, which is more conducive to
improve the accuracy of the breast mass classification.

2) We develop an improved architecture based on a CNN.
The new architecture utilizes two subnetworks to extract
features from the MLO and CC views of the breast mass
images.

3) We embed the dilated convolution layers with different
factors into the proposed novel architecture. The embedded
layers expand the receptive fields and increase the diversity
of the breast mass images.

4) We add a penalty term to the cross-entropy loss function
to improve the performance of the deep learning model. The
penalty term increases the difference between the benign
and malignant breast mass images, which helps reduce
the misclassification rate and improves the classification
performance.

The remainder of this paper is organized as follows.
Section 2 introduces the relevant literature. Section 3 details
the method that presented in this paper. Section 4 con-
ducts experiments and analyzes the experimental results.
Section 5 concludes the method presented in this paper.

II. RELATED WORK
Over the past few years, several approaches for mammogra-
phy classification have been proposed to increase the mam-
mographic image classification performance. In this section,
we review some advanced algorithms related to the proposed
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FIGURE 1. Mammographic images from a patient. (a) and (b) show the
left breast images with the MLO and CC views, respectively. (c) and (d)
show the right breast images with the MLO and CC views, respectively.

method, which are divided into two types: multi-view and
dilated convolution mammographic image feature extraction.

A. MULTI-VIEW MAMMOGRAPHIC IMAGES
The images that provided with two views of the same object
contain complementary information [28], in contrast to the
images pertaining to a single view. The complementary
information is used to describe the breast mass shape, edge
morphology, density, degree of calcification and location
distribution in increased detail from various perspectives.
Consequently, by extracting features from the mammo-
graphic images with two views, it is possible to explore supe-
rior discriminative information. Fortunately, mammographic
images are typically acquired from the same breast with two
views: a lateral view called mediolateral oblique (MLO) view
and a top head-to-toe view called craniocaudal (CC) view.
Fig. 1 shows the mammographic images with the MLO and
CC views obtained from a patient. From Fig. 1, we can find
that images acquired from different views of the breast mass
providemore visual features than those obtained from a single
view.

Several scholars have tried to explore the features from the
mammographic images with different views. Samulski and
Karssemeijer [29] extracted breast masses from the mam-
mographic images with the MLO and CC views by using
the geometry-based region matching method, then classi-
fied the breast masses by using the multi-view classifier.
Velikova et al. [30] classified themammographic images with
each view by using Bayesian networks, respectively. Then
making decision on the outputs of their Bayesian networks by
using logistic regression. Bekker et al. [31] used two ANNs
to extract the features from the mammographic images with
the MLO and CC views. Then they fused the features of the
mammographic images from two ANNs for benign or malig-
nant classification. Although the method proposed in the
literature [31] can extract features from the mammographic
images with various views, it cannot extract features with a
strong discriminative performance due to the loss of spatial
information caused by the feature transformation from image
to a long dimensional vector. To capture complementary
information frommammographic images, Carneiro et al. [32]
proposed a CNN based algorithm to extract features from
four full-breast images from the same patient simultaneously.

FIGURE 2. Receptive field expansion without loss of
resolution or coverage on mammographic images. (a) The detailed local
information of the mammographic image can be extracted by a dilated
convolutional kernel with a small factor of 1; (b) the overall information
of the breast mass can be extracted by a dilated convolutional kernel
with a medium factor of 2; (c) the overall information of the breast mass
with the context information can be extracted by a large dilated
convolutional kernel with a factor of 4.

Since a full-breast image contains many anatomical organs,
such as pectoralis muscles, milk glands and fat, the features
that are extracted from full-breast images cannot capture the
crucial information due to the presence of many interfering
objects.

B. DILATED CONVOLUTION
The dilated convolution is widely used in image feature
extraction due to its good performance in extracting powerful
features with various receptive fields from image [33]. The
dilated convolution applies a filter with different convolu-
tional regions by employing different dilation factors, which
can expand the receptive fields without losing the resolu-
tion or coverage. Since the dilated convolution operation
expands the receptive field without increasing the connec-
tions of the model, the parameters of the model are not
increased. Fig. 2 shows the dilated convolutions with different
factors on a mammographic image.

For mammographic image classification, Yu and
Koltun [34] and Yang et al. [35] embedded the dilated convo-
lutional layers into a CNN to capture multi-scale contextual
information. Li et al. [36] proposed a detection method for
identifying the pedestrians, which generates feature maps
with various receptive field scales by using the dilated
convolutional kernels with various factors. For the full-
mammogram diagnosis, Hang et al. [37] applied dilated con-
volutions to maintain a higher resolution of mammographic
image while keeping the receptive field size consistent.

In this paper, we design a network architecture to make full
use of the characteristics of the mammographic images such
that more discriminative information can be naturally cap-
tured. The proposed network can extract the complementary
information from two perspectives of the same breast mass by
using two feature extraction subnetworks, and it can extract
various ‘‘field of vision’’ by using the dilated convolutional
neural networks with various factors. More details of the
proposed approach are described below.

III. PROPOSED METHOD
As mentioned previously, exploiting a mammographic image
with multi-view and multi-scale are useful to extract the
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FIGURE 3. Architecture of the MVMDCNN.

features with strong discriminative performance. Inspired
by these motivations, we propose a novel approach to
increase the classification accuracy of mammographic
images. We improve the classification performance of the
mammographic images from two phases: improving the
architecture of the network and the loss function of the deep
learning model. The former is described in Sections 3.1,
3.2 and 3.3, and the latter is described in Section 3.4.

A. ARCHITECTURE OF NETWORK
In this section, we propose a novel CNN based archi-
tecture for breast mass classification, which integrates the
multi-view mammographic image convolutional neural sub-
network and the multi-dilated convolutional neural subnet-
work (MVMDCNN). The architecture of the MVMDCNN is
illustrated in Fig. 3. The MVMDCNN contains two inputs,
amulti-viewmammographic image convolutional neural sub-
network (MVCNN) and a multi-dilated convolutional neu-
ral subnetwork (MDCNN). For the proposed network, two
breast mass images with the MLO and CC views are simul-
taneously fed into the MVCNN. Then MVCNN generates
the feature maps from multiple views and feeds them into
the MDCNN. The MDCNN convolutes the inputted feature
maps by using the dilated convolutional layers with factors
of 1, 2 and 4 to generate the feature maps with multiple
receptive fields. Then, the feature maps that are extracted
from the MDCNN are flattened and inputted into a fully con-
nected layer to extract the features of the breast mass image.
Finally, inputting the features into a softmax layer to classify
the breast mass. MVMDCNN receives two mammographic
images with two views and outputs the classification result.
As a result, it realizes an end-to-end mammographic image
classification algorithm.

The MVMDCNN uses the MVCNN to extract the features
from breast mass images with the MLO and CC views.
Because the mammographic images are acquired from differ-
ent perspectives, the complementary breast mass information
can be exploited from various views of the mammographic
images and are conductive to obtain features that can describe
the characteristics of the breast mass more completely. The
MDCNN generates the feature maps with multi-scales infor-
mation from the mammographic images by using the dilated
convolutional kernels with different factors. The extracted
feature maps can represent the characteristics of the breast

FIGURE 4. Architecture of multi-view mammographic image
convolutional neural subnetwork (MVCNN).

mass with a multi-granularity level, which is helpful to
extract powerful discrimination information of the breast
mass images.

The inputted images are resized to a size of 180 × 180
pixels. In order to put the feature maps generated by the
MDCNN into a full connection layer, we use a flatting layer to
flatten the 60 featuremaps extracted from previous layers into
a one-dimensional vector. A full connection layer contains
1,000 nodes is used to extract the features from the one-
dimensional vector generated by the flattening layer. At the
end of the architecture of our network, we use a classifica-
tion layer that contains two nodes to classify the image into
benign or malignant mass.

B. MULTI-VIEW CONVOLUTIONAL NEURAL SUBNETWORK
To extract the features with the powerful discriminative
information from the mammographic images, a novel fea-
ture extraction network, called the MVCNN, is designed,
as described in this section. As illustrated in Fig. 4,
the MVCNN contains two inputs and one output. It receives
two breast mass images with theMLO and CC views simulta-
neously, and it uses two convolutional neural subnetworks to
extract the features from the inputs. TheMVCNN outputs the
superposed feature maps that are generated by superposing
the outputs from the two convolutional neural subnetworks.
Because the breast mass images with the MLO and CC views
contain complementary information of the breast mass, using
two convolutional neural subnetworks to extract the features
from these images can help obtain powerful discriminative
information compared to that obtained when utilizing a single
view.

Each convolutional neural subnetwork in MVCNN uses
two convolutional layers to extract the convolutional features
from a mammographic image. Each convolutional layer con-
tains 30 3 × 3 convolutional kernels with a stride of 1 and
followed by a maximum pooling layer with a 2 × 2 filter
with a stride of 2. At the end of the network, a concatenation
layer is adopted to concatenate the feature maps generated
by the two convolutional neural subnetworks. The size of the
inputted mammographic image is 180 × 180 pixels and the
outputs of the MVCNN are 60 feature maps with 45 × 45
pixels.

126276 VOLUME 7, 2019



L. Sun et al.: Multi-View CNNs for Mammographic Image Classification

FIGURE 5. Architecture of the multi-dilated convolution subnetwork
(MDCNN).

C. MULTI-DILATED CONVOLUTIONAL
NEURAL SUBNETWORK
Breast masses vary substantially in terms of the shape, size,
and texture. Using the convolutional kernels with different
receptive fields to convolute the breast mass images can
increase the diversity and complementary information of
the features that are extracted from the breast mass images.
Furthermore, we can extract more diverse information from
the mammographic images. For instance, we can obtain the
texture information of the breast mass from the dilated con-
volutional feature maps with a small factor of 1, and we
can obtain the shape of the breast mass from the dilated
convolutional feature maps with a large factor of 4.

To identify the features that have a strong discriminative
performance from the breast mass images, a network called
the MDCNN is designed, which is able to capture more valu-
able features by using the multiple dilated convolutional ker-
nels with different factors. The architecture of the MDCNN
is illustrated in Fig. 5. The MDCNN has one input and one
output. It receives the feature maps that are generated by
the previous layer, uses multiple dilated convolutional layers
with dilated factors of 1, 2 and 4 to convolute the inputs, and
obtains the dilated feature maps with various convolutional
receptive fields. In the end, the MDCNN outputs the feature
maps that are generated by superposing the dilated feature
maps from the multiple dilated convolutional layers. Because
the dilated convolutional kernels with different factors can
extract the feature maps with various receptive fields, the fea-
ture maps with multi-granularity levels contain more detailed
and richer feature information, which is beneficial to improve
the classification performance of the mammographic images.

Considering that the use of a dilated kernel with a too
big factor is not conducive to the extraction of the effective
convolutional features from the breast mass images, we use
the dilated convolutional kernels with small factors of 1,
2 and 4 to extract the feature maps from the inputs. The
inputs of the MDCNN are 60 feature maps extracted from
the previous layer. The three dilated convolutional layers in
the MDCNN extract the feature maps from the inputs via 20
3× 3 dilated convolutional kernels with factors of 1, 2 and 4.
The outputs of the MDCNN are 60 feature maps obtained
by concatenating the outputs of these dilated convolutional
layers.

D. LOSS FUNCTION
In addition to improving the network architecture, we also
modify the loss function to improve the breast mass image

classification performance. Various loss functions, such as
the mean square (MSE) and cross entropy loss functions,
are widely used in the training process of the deep learning
model. These loss functions can guide the evolution direction
of the deep learning model to reduce the error rate on all
the samples. Therefore, all the samples, including the sam-
ples with correct and incorrect classification in the dataset,
contribute equally to the model training. In fact, a sample
that is classified correctly has a smaller contribution than a
sample that is misclassified to the model parameters. If we
guide the evolution direction of the model to focus on the
misclassified samples and reduce the contributions of the
samples that have been classified correctly, that is, we reduce
the misclassification rate of the model by amplifying the
contribution weight of the previously misclassified samples,
the discriminative performance of themodel can be enhanced.
We introduce a penalty term that guides the process of the
model training to focus on the samples that are misclassified.
The contributions of the misclassified samples are increased
by the additional penalty term in the model training process.
The penalty term is defined as follows:

P =

∑n
i=1 abs (labeli − predictioni)

n
, (1)

where n is the number of misclassified samples in an epoch
on the training dataset. The penalty term calculates the sum of
the absolute differences between the labels and the prediction
probabilities of all the misclassified samples, and it is used
to increase the weights of the misclassified samples in the
training process. The loss function is defined as follows:

J = CrossEntropy+ λP, (2)

where CrossEntropy is the cross entropy formula, P is the
penalty term, and λ is a hyper-parameter that modulates the
contribution weights of all the misclassified samples in the
training process.

For improving the classification performance of the mam-
mographic images, we train the MVMDCNNmodel with our
proposed improved loss function J and refer to this approach
as the MVMDCNN-LOSS.

IV. RESULTS AND DISCUSSIONS
We evaluate our approach on two public datasets: DDSM
and MIAS [38]. In our work, we first describe the evaluation
datasets, experimental setting and experimental implementa-
tion of the proposed approach. Then we analyze the experi-
mental results of the proposed method and the state-of-the-art
methods for mammographic image classification in detail.

A. DATASETS
The Digital Database for Screening Mammography (DDSM)
[39] is a mammographic image dataset, which contains
approximately 2,600 patients’ breast medical images, each
patient provides 4 images from the MLO and CC views of
the left and right breasts, respectively.
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In this section, a subset with 1,445 samples is selected from
the DDSM database for evaluating the different classification
methods. Specifically, the subset contains 747 benign sam-
ples and 698 malignant samples. The k-fold cross-validation
scheme is widely used to evaluate the performance of the clas-
sification methods in the medical image processing and deep
learning research [40], [41]. In our experiments, we adopt the
seven-fold cross-validation strategy and choose the average
of the accuracies of seven folds to evaluate all the mammo-
graphic image classification methods. The training and test
datasets in the first six folds contain 85% and 15% of the sam-
ples, respectively. In other words, there exist 1,228 training
samples and 217 test samples in the first six folds. In the last
fold, 90% of the samples (i.e., 1,300 samples) are selected
as the training samples and the remaining samples (i.e.,
145 samples) are regarded as the test samples. Simple random
sampling is performed on the subset by dividing the sam-
ples into seven portions by percentages without overlapping.
Specifically, the first six training folds contain 635 benign and
593malignant breast masses, and the corresponding test folds
contain 112 benign and 105malignant breast masses. The last
training and test folds contain 672 benign and 628 malignant
breast masses, 75 benign and 70 malignant breast masses,
respectively.

B. EXPERIMENTAL SETTING
The breast mass images that are used as the training and test
datasets are resized to 180 × 180 pixels. The weights of the
network are randomly initialized and the learning rate is set
as 10−4. The contribution weights of all the misclassified
samples in the proposed loss function λ is set as 10−3. The
batch size is set as 128 in the training process. The stop crite-
rion of our network is set as the condition at which the training
accuracy equals 100%. The maximum number of training
epochs for our network is set as 200. All methods mentioned
in this paper are optimized by Adam algorithm [42]. In this
work, TensorFlow [43] is chosen as the framework to evaluate
all compared methods and our proposed method in this paper.
The proposed method is evaluated by using the following
software environment: Ubuntu 16.04, python 3.5 and Ten-
sorFlow 1.8.0; the hardware environment is as follows: Intel
i7-8700K, RAM 16G and NVIDIA GeForce GTX 1080 Ti
GPU.

C. ACCURACY COMPARISON AND ANALYSIS
The LeNet-BN is based on LeNet, which adds a BN layer
after every convolutional layer to normalize the outputs
of the convolutional layer to the same data distribution.
From Table 1, LeNet and LeNet-BN obtain accuracies
of 0.7142 and 0.7742, respectively. This finding demon-
strates that the BN layer used in the LeNet-BN is beneficial
to improve the classification performance. Accordingly,
we add a BN layer after every convolutional layer in
our method. Specifically, from the experimental results
listed in Table 1, the accuracies of our methods, namely,
MVCNN, MVMDCNN and MVMDCNN-LOSS are 0.8018,

TABLE 1. Comparison of different mammography classification methods
based on LeNet on the DDSM.

FIGURE 6. Comparison of the breast mass images with different
perspectives. The images in the first and second rows are cropped images
with the MLO and CC views of the mammography, respectively. The
images in the different columns are cropped from different breast
masses: columns (a) and (b) correspond to benign breast masses and
(c) and (d) are malignant breast masses.

0.8156 and 0.8202, respectively. The accuracy improvements
of our methods are 8.76%-10.60% over the baseline LeNet
model and 2.76%-4.60% over the LeNet-BN. This aspect
illustrates that the proposed multi-view based methods can
extract more powerful features from two different views of
the breast mass images simultaneously compared to those
obtained by the LeNet and LeNet-BN. The breast mass
images with the MLO and CC views from the DDSM are
presented in Fig. 6, which shows the morphological charac-
teristics of the same breast mass with different views. From
the breast mass images with the MLO and CC views, we can
extract more useful information. For instance, we can obtain
the shape of the breast mass from the CC view of sample (c),
determine the prominent texture of the breast mass from the
MLO view of sample (c), and capture more detailed edge
information from the MLO and CC views of sample (b)
simultaneously.

Benefiting from the feature maps extracted from the
breast mass images by employing various receptive fields
can represent diverse information of the breast mass, the
MVMDCNN achieves an accuracy of 0.8156, which is 1.38%
higher than that of the MVCNN. The better performance of
the MVMDCNN in comparison with that of the MVCNN
demonstrates that introducing a dilated convolutional layer
is beneficial to improving the classification performance.
Fig. 7 shows the morphological characteristics of the same
breast mass with different factors dilated convolutional
kernels. The figure also illustrates that the MVMDCNN
can extract more diversified features from the breast mass
image.
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FIGURE 7. Comparison of the dilated feature maps captured with
different factors from breast mass images. The images in the first row are
the original breast mass images. The images in the second, third and
fourth rows are the dilated feature maps captured with factors of 1, 2 and
4, respectively. The images in different columns are cropped from
different breast masses: Columns (a) and (b) correspond to benign breast
masses, columns (c) and (d) are the malignant breast masses.

TABLE 2. Comparison of different classification methods on the DDSM.

Compared with the MVMDCNN which uses the standard
cross entropy loss function, the MVMDCNN-LOSS obtains
an accuracy improvement of 0.46%. This finding proves the
effectiveness of the modified loss function in guiding the
evolution direction of the classification model to reduce the
misclassification error. In addition, Table 1 and Table 2 show
that the accuracies of our improved LeNet based models,
i.e., MVMDCNN and MVMDCNN-LOSS are 10.14% and
10.60% higher than that of the baseline model, respectively.
In summary, the two modified approaches exploiting archi-
tecture improvement and the approach with the modified loss
function are all effective and beneficial for further enhancing
the performance of the breast mass classification task.

The experimental results of the proposed method and the
compared state-of-the-art methods on the DDSM dataset
are listed in Table 2. The ANNS-MV uses two ANNs to

extract the features from the breast mass images with the
MLO and CC views. Then, an ANN is used to classify the
fusion features extracted from the aforementioned ANNs as
a benign or malignant breast mass. The ANNS-MV achieves
a low accuracy due to the loss of the spatial informationwhich
is caused by flattening a two-dimensional image to a vector.

The CNN+SVM uses the SVM to classify the features
extracted from the breast mass images via the CNN. Since
the CNN has a powerful automatic feature extraction capa-
bility and the SVMhas a superior generalization performance
for classification, the accuracy of the CNN+SVM is 2.30%
higher than that of LeNet. The CNN(Conv5+Fc7)+SVM
uses the SVM to classify the fusion feature by concate-
nating the outputs of the fifth computing layer (convolu-
tional layer) and the last computing layer (full-connected
layer). Since the features extracted from the various layers
contain more diverse information, which is conductive
to obtaining features with a strong discriminative perfor-
mance, the CNN(Conv5+Fc7)+SVM achieves an accu-
racy improvement of 1.39% in comparison with that of
the CNN+SVM that extracts features from only the last
layer. The BN layer can improve the generalization per-
formance of the CNN effectively. Therefore, we imple-
ment the CNN(Conv5+Fc7)+SVM by appending a BN
layer after every convolutional layer, where the resulting
network is denoted as the CNN(Conv5+Fc7)+BN+SVM.
According to the experimental results, the accuracy of the
CNN(Conv5+Fc7)+BN+SVM is 5.07% higher than that of
the CNN(Conv5+Fc7)+SVM.

The state-of-the-art deep learning classification meth-
ods, such as AlexNet, ZFNet, VGG16, VGG19, ResNet,
DenseNet, InceptionV4, MobileNetV2 and ShuffleNetV2
have a powerful feature extraction capability. From the exper-
imental results listed in Table 1 and Table 2, we can find
that the accuracies of the AlexNet and ZFNet are 1.02%
and 4.04% higher than that of the baseline LeNet model.
This finding indicates that using small filters to convo-
lute the breast mass image can help retain more original
image information. Because the deeper networks can extract
more abstract image features than shallow networks and the
abstract features facilitate the extraction of more discriminat-
ing features, the classificationmethods with deeper networks,
i.e., VGG16, VGG19, ResNet and DenseNet achieve accu-
racy improvements of 4.75%-6.66% over that of the base-
line LeNet model. The MobileNetV2 and ShuffleNetV2 are
light-weight networks, which have fewer parameters than
other typical CNN networks with complex architectures. The
accuracies of the MobileNetV2 and ShuffleNetV2 are 7.71%
and 8.38% higher than that of the baseline LeNet model,
respectively.

The proposedmethod extracts features with multiple views
and various receptive fields from breast mass images. This
strategy can enhance the discriminate performance of the fea-
tures effectively. Furthermore, the penalty term incorporated
into the cross entropy loss function increases the weights of
the samples that are misclassified in the training process.
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FIGURE 8. Processing time for breast mass image classification tasks:
Comparison with the state-of-the-art classification methods on DDSM.

FIGURE 9. Convergence rates in the training processes of the baseline
model and our methods on the DDSM dataset.

This strategy enables the model to reduce the misclassifi-
cation rate. Consequently, the MVMDCNN-LOSS can iden-
tify the discriminative features effectively. The experimental
results show that our method achieves the highest accuracy
against the compared state-of-the-art methods for mammo-
graphic image classification on the DDSM.

The processing times of the different classification meth-
ods are shown in Fig. 8. Compared with the baseline
LeNet model, the processing time of our MVMDCNN-LOSS
method is higher than that of the baseline model. However,
as listed in Table1 and Table 2, the accuracy of our method is
10.60% higher than that of the baseline model. In particular,
from the experimental results listed in Table 1 and Table 2 and
shown in Fig. 8, we can find that compared with some of
the state-of-the-art classification methods, such as ResNet,
DenseNet and InceptionV4, our method not only achieves the
highest classification accuracy, but also is the most efficient
due to our method contains less computing layers than the
other methods. In summary, our method demonstrates a better
performance than that of the state-of-the-art methods for the
mammographic image classification mentioned in this paper.

D. CONVERGENCE RATE ANALYSIS
The baseline model and the proposed method have large
differences in terms of their convergence rates in the training
process. The convergence rates of the baseline model and
the proposed method on the DDSM are plotted in Fig. 9.

FIGURE 10. Comparison of the original breast mass images and their
flipped images. The images in the first and second rows are the original
images and the corresponding flipped images, respectively. The images in
different columns are cropped from different breast masses: Columns
(a) and (b) correspond to benign breast masses, columns (c) and (d) are
malignant breast masses.

The LeNet converges at approximately iteration 30. The
LeNet-BN converges faster than the LeNet. This finding
illustrates that introducing the BN layer that follows by every
convolutional layer is beneficial to reduce the difficulty of
adapting multiple data distributions. The convergence rate of
the LeNet-BN is slower than those of our methods. This phe-
nomenon is mainly observed because the LeNet-BN dimin-
ishes the data consistency and increases the difficulty of
classification by randomly inputting the breast mass images
from different perspectives. The proposed methods converge
at approximately iteration 20, which is faster than the conver-
gence of the comparedmethods for themammographic image
classification.

E. ROBUSTNESS EVALUATION
To verify the robustness of the proposed method, we compare
our method with the state-of-the-art methods for the mam-
mographic image classification task on the MIAS. Since the
MIAS contains only 322mammographic images and the deep
learning technique is a data-driven algorithm, it is difficult
to realize its advantage on this small dataset. Consequently,
we use the models that are trained on the DDSM to verify the
samples that are extracted from the MIAS.

The images in the MIAS were photographed with the
MLO view only. To adapt the two inputs of the proposed
methods, we generated the breast mass image with the CC
view from each breast mass image with the MLO view in
the MIAS. Since the two images of the MLO and CC views
are acquired from the same breast mass with different per-
spectives, the images reflect multiple visual features of the
same breast mass. Inspired by the mirror image generation
method in [51], we generated the mirror images from the
breast mass images of the MLO view by flipping them hori-
zontally. The mirror image can be viewed as a representation
of the breast mass that is opposite to the corresponding orig-
inal breast mass image to some extent. The original breast
mass images and the corresponding mirror images are shown
in Fig. 10.
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TABLE 3. Comparison with state-of-the-art mammography classification
methods on the MIAS.

The experimental results of the different methods on the
MIAS are listed in Table 3, we can find that the proposed
method is more robust than the compared state-of-the-art
methods. The good performance of the proposed methods is
attributing to the effective feature extraction capability from
the breast mass images of our architecture. The accuracies
of the MVMDCNN and MVMDCNN-LOSS are 0.9% lower
than that of the MVCNN. This finding indicates that as the
complexity of the model increases, the generalization ability
of the model decreases. In summary, our method obtains a
higher classification accuracy than those of the compared
state-of-the-art classification methods for mammographic
images on the MIAS and exhibits the highest robustness on
the DDSM and MIAS mammographic image datasets.

V. CONCLUSION
In this paper, we proposed a novel method for mammo-
graphic image classification. The proposed method integrates
the MVCNN and MDCNN to extract features from multiple
views of the breast mass images. The network can extract the
features with complementary and diverse information, which
can help increase the classification accuracy and robustness
of the model. We modified the cross-entropy loss function
by adding a penalty term that can enhance the contribution
weights of the misclassified samples in the training process.
The modified loss function guides the evolution direction
of the model to minimize the misclassification error and
increase the classification accuracy. We evaluated the pro-
posed method and the compared state-of-the-art classifica-
tion methods on the two well-known mammographic image
datasets, i.e., DDSM and MIAS. The experimental results
demonstrated that the proposed method can outperform the
compared state-of-the-art methods for mammographic image
classification.
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